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A holographic approach to the analysis of a Bragg scattering pattern has been

described by SzoÈ ke [Acta Cryst. (1993), A49, 853±866]. The combination of

crystallographic procedures and holographic interpretation allows reconstruc-

tion of an unknown part of the crystalline structure model-free if the other part

of the structure is known. By introducing the concept of an average crystal, this

approach is extended to point defect structures in inorganic crystals. In this case,

the host lattice is well known while the defect structure is regarded as the

unknown part. To demonstrate the feasibility of this approach, an Sc2O3 sample

doped with Er at low concentration has been studied. An additional electron

density has been observed, which can be interpreted as an interstitial Er

position.

1. Introduction

The idea of holography in the range of X-ray wavelengths has

been proposed by GaÂbor (1948) and later extended by SzoÈ ke

(1986). The advantages are clear: holography can reveal a

three-dimensional image of the specimen without using a

model. The holographic principle is simple: part of a well

known reference wave is scattered by the unknown object.

This scattered wave interferes with the reference wave causing

an intensity modulation which is then recorded in the far ®eld

outside the sample. With the knowledge of the reference wave,

phase information is conserved in this modulation. While in

the visible light range the object is reconstructed by illumi-

nating the hologram again with a replica of the reference

wave, this is done numerically for X-rays. In terms of crys-

tallography: as in a holographic image, the phase information

is conserved, the object can be reconstructed without re®ne-

ment. Atomic resolution holography as has been proposed by

SzoÈ ke (1986) uses the ¯uorescence of an atom as a reference

wave to image its surrounding.

As this method is element speci®c and can image the

surrounding of each atom of interest, it would be the ideal

technique to study point defects in inorganic crystals. Usually

these defects are randomly spread objects, e.g. dopants which

can be built into the host crystal either on lattice sites or on

interstitial positions. In any case, they will in¯uence their

surroundings because their physical properties differ from

those of the regular atoms. Unfortunately, as the concentra-

tion of these defects is often of the order of 0.1±10%, atomic

resolution X-ray ¯uorescence holography is so far not sensi-

tive enough to study their in¯uence on the host crystal, their

¯uorescence intensity is too small to record a hologram in

reasonable time.

The most common approach to determine the dopant

positions is to measure Bragg re¯ections, which ensures a

maximum amount of signal, and to re®ne a preliminary model

to these data. In some cases, it will also be possible to study

diffuse scattering as the point defects are not periodically

ordered. Both approaches depend on a good model while it is

often desirable to use a model-free approach like in holog-

raphy.

Thus, SzoÈ ke (1993) proposed a new approach that combines

the advantages of both methods. The Bragg scattering pattern

as a whole is interpreted as a hologram and is reconstructed

model-free, where the known part of the crystal creates

the reference wave. This approach has been applied in the

program package EDEN (Somoza et al., 1995), written

originally for protein crystallography by H. SzoÈ ke. In this

paper, we show that it is also very suitable for studying point

defect structures.

To demonstrate the feasibility of this approach, the struc-

ture of erbium (�0.4%) in Sc2O3 has been studied. This object

is of great interest: chemically, erbium is assumed to replace

scandium but with an ionic radius 20% larger than Sc it will

have to distort its surrounding. Additionally, spectroscopic

measurements, carried out at the Institute of Laser Physics

at the University of Hamburg, indicate that the atomic

arrangement in this material might be even more complicated,

as pointed out in Peters et al. (1998).

2. The method

As described in SzoÈ ke (1993), an X-ray diffraction pattern of a

partially known material can also be seen as a hologram. The



principles of this approach will be presented here shortly, for a

more detailed explanation please refer to the literature.

An incoming monochromatic plane wave of X-rays is

scattered by the host crystal. Owing to its long-range periodic

structure, high intensity is only observed in very discrete spots

± the Bragg re¯ections. They occur whenever the Bragg

condition is ful®lled and the scattering from every unit cell

adds up coherently while all waves average out to zero in

between the Bragg spots.

In our case, the host lattice is known. The wave scattered by

this perfect crystal can be calculated for every scattering

vector H being proportional to

R �P R
UC

�known�r� exp �2�ih � r� d3r: �1�

The integration is carried out over the unit cell of the host

crystal and summed over the whole crystal. This is the well

known structure factor for the known undisturbed structure ±

we will call this the reference wave.

Bragg scattering always averages over the entire crystal.

Therefore, the electron-density distribution that can be seen as

producing the (Bragg) scattering pattern is the average crystal

(Cowley, 1981). In the case that a dopant is present, the unit

cell will look slightly different, e.g. atoms are displaced. For

low concentrations of defects, we can assume that they do not

distort the structure over a range that is much larger than a

unit cell. Therefore, we assume that this defect structure can

be understood as an electron-density distribution in the unit

cell which differs slightly from that of the undisturbed host

crystal. We call this distorted `unit cell' that contains the defect

structure �unknown. The electron density of the average crystal

will be the sum of both undisturbed host lattice and defect

structure, weighted with the probability w of their appearance:

�av�r� � �1ÿ w��known�r� � w�unknown�r�: �2�

The wave scattered at the unknown part of the crystal ± the

dopants and their surroundings ± can be formally written in

analogy to (1) as

O �P R
UC

�unknown�r� exp �2�ih � r� d3r: �3�

We call it the object wave, as the underlying density distri-

bution is the object we are interested in.

The dopant structure is therefore understood as a different

unit cell with the same size but different electron-density

distribution. The dopants occupy a similar site in each unit cell

in which they are present. These unit cells are therefore similar

but their arrangement is non-periodic as the dopant is not

present in every unit cell.

This approach is closely related to time-resolved X-ray

diffraction (SzoÈ ke, 1999), where a structural change of the

molecule in the crystal is induced e.g. by a laser pulse. This

structural change does not affect every molecule but only a

certain number of randomly spread unit cells. The structure

probed with the X-ray pulse then consists of a spatial ordered

lattice of randomly distorted and undistorted unit cells.

The intensity for a scattering vector h is then given by:

I��B� / jF�h�j2
� jR�h� �O�h�j2 �4�
� jR�h�j2 � R�h�O��h� � R��h�O�h� � jO�h�j2: �5�

The squared self-interference terms are pure intensity terms

while the interference terms still contain phase information.

Note that the deformed unit cells do not have to have their

own translational periodicity. It is useful to think about how

the `solution' of this intensity pattern will look. We know that

our structure is periodic in wide ranges (the concentration of

distortions is low), therefore we will observe a very clear

Bragg pattern. This periodicity is broken in some places by the

randomly spread dopants. The wave scattered by these objects

interferes with the reference wave causing a small modulation

on the perfect Bragg pattern, which is described by the

interference terms. The self-interference term jO�h�j2 will be

negligibly small.

Acta Cryst. (2003). A59, 138±142 Anduleit and Materlik � Point defect structures 139

research papers

Figure 1
The Sc2O3 structure. For a better orientation, a part of the unit cell is
shown below. Dark spheres indicate oxygen, lighter spheres scandium.
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Subtracting the known host crystal �known from this �av, the

remaining electron-density distribution will be essentially the

structure of the defects.

The program package EDEN (Somoza et al., 1995) provides

a powerful tool to solve (4). The unknown electron density is

decomposed into a set of Gaussian basis functions in real

space, which are placed on a regular grid in the unit cell. The

grid spacing �r corresponds to the resolution of the measured

data and the width of the Gauss functions is ®xed relative to

this spacing by the fraction � while their height is a free

parameter np.

�unknown � �approx

� ����r2�ÿ3=2
XP

p�1

np exp ÿ �rÿ rp�2
��r2

� �
: �6�

Inserted into (4), this expression is transformed into a set of

quadratic equations with as many unknowns as basis functions

in the unit cell and as many equations as re¯ections have been

measured. EDEN solves this equation in linearized form using

a conjugate gradient solver and then iteratively adds up the

newly recovered electron density to the reference structure.

The algorithm is constrained by using the positivity of the

electron density to stabilize convergence. Available symmetry

information is also used to simplify the problem.

3. The material: Sc2O3

Sc2O3 is a material of interest in laser physics, like several

other sesquioxides. The structure is shown in Fig. 1. It crys-

tallizes in space group Ia�3 having a lattice constant of

approximately 9.85 AÊ (Schleid & Meyer, 1989). With 16

formula units in the unit cell, three positions are observed: a

general oxygen position 48(e) and two Sc positions, a high

symmetry 8(a) and a lower symmety 24(d), located on the

twofold axes. Apart from small dislocations of the 24(d) Sc

atoms, the structure can be understood as eight f.c.c. lattices,

formed by Sc. Each of these is surrounded by six oxygen atoms

in the form of a strongly deformed octahedron or better a cube

with two missing corners. This is described well in Pauling &

Shappell (1930).

Sc2O3 can be doped with several rare earths, which are

assumed to replace Sc as trivalent ions. Recently, there have

been successful attempts to grow large crystals of high quality

using a heat-exchanger method (Peters, 2001). The maximum

dopant concentration of Er has been observed to be relatively

low (�0.4%). If Er is substituted for Sc, it is expected to

distort its surrounding strongly because of its ionic radius (rEr =

0.89 AÊ ) being about 20% larger than that of Sc (rSc = 0.75 AÊ ).

In addition, the structure is relatively dense. In time-resolved

emission measurements, the radiative lifetime of the Er 4S3=2

state has been observed to be drastically smaller for Er in

Sc2O3 than for comparable compounds, e.g. Er:Lu2O3 and

Er:Y2O3 (Peters et al., 1998). This indicates that Er occupies a

site of lower symmetry in Sc2O3 than in Lu2O3 or Y2O3.

Therefore, there is a lot of indirect evidence that Er does not

replace Sc and it is of great interest to understand how Er is

incorporated into the host crystal.

4. Experimental

Two Sc2O3 crystals have been studied: one undoped, the other

doped with Er (�0.4%). This provides us with the opportunity

to compare them directly. The crystals (usually of cm size)

were split into fragments of approximately 300 mm diameter.

Data were collected in a common Bragg scattering experi-

ment, using a four-circle diffractometer at beamline D3 at

HASYLAB. An energy of 31 keV has been chosen using an

Si(111) double-crystal monochromator. At this energy, the

in¯uence of absorption can be neglected. Intensities of

re¯ections in 1=8 of the reciprocal space have been measured

in !-scan geometry. No hint of a superstructure has been

found. The data sets were relatively large, especially for the

doped crystal, where re¯ections have been measured up to

sin �=� = 0.57 AÊ ÿ1. The data have been corrected for drift. To

®t into the equation system to be solved, the data additionally

have been scaled to absolute values and the resolution was

decreased to ®t the desired grid spacing of 0.125 AÊ . This is

done by introducing an arti®cial Debye±Waller factor which

has the effect of smearing out the electron density in real

space (Somoza et al., 1995). In addition to that, it was neces-

sary to correct for extinction effects. For this task, a formula

similar to that proposed by Larson (1970) has been used:

jFobs extj � jFobsj 1� 0:001xF2
calc�

3

sin �2�B�
� �1=4

: �7�

Here, x is the extinction factor, �B the Bragg angle and � the

wavelength. For both data sets, the (well known) Sc2O3

structure serves as reference wave, as has been described by

(1). Since this contribution of the host crystal strongly domi-

nates the structure factors, the reference wave gives us the

calculated structure factors in (7) for the extinction correction

R � Fcalc. This can be done without noticeable inaccuracy. The

value of the extinction factor was found iteratively using an

individual weighting for each re¯ection. In that way, the

re¯ections which were mostly affected by extinction were

systematically under-weighted in the ®rst iterations of the

algorithm.

5. The results

The calculations of EDEN converged well, leading to a crys-

tallographic R factor of 2% for the doped and 3% for the

undoped data set. Comparing the result for the undoped

crystal with the calculated model structure, the agreement was

excellent, which proves that EDEN delivers the correct solu-

tion for these samples.

When calculating the difference between the two solutions

�doped�r� ÿ �undoped�r�, essentially the in¯uence of the defect

structure remains. It has been found that additional peaks in

the electron density appear, which are present in the doped

structure but not in the undoped structure. These peaks are



very small, but subtracting the density map of the undoped

crystal from the density map of the doped crystal shows them

clearly. This is shown in Fig. 2 for a part of the unit cell, cut

perpendicular to the [001] direction at z = 0.075. The peaks

appear distinctly displaced from the Sc position. They can be

identi®ed even more clearly in the weighted difference,

�doped�r� ÿ �undoped�r�
�undoped�r�

:

Their position can be identi®ed as 48(e) (0.15, 0.11, 0.06) with

an accuracy of �0.0125. The result is shown in Fig. 3 and in

schematic illustration in Fig. 4 for a cube, cut from the unit cell

in (0.25 � x < 0.75, 0 � y < 0.5, 0 � z < 0.5) which corresponds

to 1=8 of the unit-cell volume. Their site can be understood as

occupying the two corners of the oxygen cube that are empty

in the undisturbed structure (see x3). In each of these corners,

three symmetry-equivalent positions can be distinguished,

each of them situated very close to one of the neighbouring

oxygen atoms.

This observation can be explained as follows: having a

larger ionic radius than Sc, Er is too large to replace Sc atoms

without distorting the lattice heavily. Therefore it occupies a

different position, which we observed as additional peaks.

Remembering that during the growth process, depending on
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Figure 2
A cut through the electron-density map at z = 0.075 perpendicular to the
[001] direction. In (d) the region shown in (a)±(c) is marked. Light
colours indicate regions of high electron density. (a) Reconstructed
electron density of the undoped crystal, (b) the same cutout from the
doped crystal and (c) the difference between the two clearly shows an
additional electron density.

Figure 3
The additional peaks in part of the unit cell appear clearly in the weighted
electron density, which is here convoluted with a Gaussian function (� =
0.25 AÊ , cut-off level 50% of maximum) for better visibility. Shown here is
the same part of the unit cell as in Figs. 1 and 4.

Figure 4
The position of the additional peaks (A) in part of the unit cell, for
further details refer to text.

Figure 5
An erbium atom (white) surrounded by its neighbouring oxygen atoms.
The radii of the atoms are shown in correct relations.
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the temperature, a certain amount of sites remain vacant

(Vainshtein, 1996), this suggests that Er, occupying the posi-

tion described here, is always coupled with an oxygen vacancy.

Assuming that an oxygen atom is missing and that the

remaining atoms in the same plane have the freedom to relax

to a limited extent, the space is large enough to contain an

Er atom. Allowing a relaxation of about 0.2 AÊ , which is

approximately twice our resolution limit, all neighbouring O

atoms ful®l the requirement of an ErÐO interatomic distance

of about 2.3 AÊ . This is illustrated in Fig. 5. These oxygen

relaxations cannot be observed directly as the charge density

in these relaxed positions is not only very weak but the

`relaxation distance' we assumed is also smaller than the

dislocation of the oxygen position itself owing to its arti®cial

(see x4) and thermal Debye±Waller factor, which can be

estimated from the spatial distribution. A slightly asymmetric

electron-density distribution for the oxygen atoms would

support this explanation. Indeed this has been observed in the

reconstruction with EDEN.

To further fortify this explanation, some estimations about

the concentrations of Er and O vacancies can be made. The

approximate amount of vacancies can be estimated from the

equilibrium concentration (Vainshtein, 1996). It is likely that

the concentration of vacancies is most likely higher than the

equilibrium concentration because of the rapid cooling and

can be of the order of magnitude of 10ÿ4±10ÿ3. Calculating the

dopant concentration from the electron density leads to an Er

concentration of 0.3% at maximum, which is consistent and

con®rms our explanation. It also has to be stressed that EDEN

can deliver absolute values for the dopant concentration that

agree well with our concentration of �0.4%. The lower

symmetry of the site can also explain the observations made in

measurements of the radiative lifetime of the Er 4S3=2 state

(Peters, 2001). It is also possible that Er forms a pair with one

Er atom replacing the neighbouring Sc atom. This cannot be

excluded as the electron density in the Sc positions of the

doped crystal differs slightly from that of the undoped crystal.

6. Summary

Using a holographic approach, the dopant structure of Er in

Sc2O3 has been studied. A small modulation of a Bragg scat-

tering pattern, caused by the dopant and its surroundings, has

been interpreted as a hologram. The underlying electron-

density distribution has been reconstructed using the software

package EDEN, proving its feasibility to reconstruct small

changes in the electron density by using the interference

terms.

Comparing the Er-doped structure of Sc2O3 with the

undoped structure, additional peaks have been observed.

They can be interpreted as an interstitial Er position, coupled

with an oxygen vacancy. The observed electron density is

consistent with the dopant concentration. The proposed

model can explain the results of spectroscopic measurements.

The holographic approach is certainly not meant to replace

other methods of studying defect structures but it provides us

with an approximate image of the average crystal which can

then be interpreted and used to construct a model for further

structural investigations. The great advantage of this method is

its independence of complicated measurement techniques and

its model-free approach.

The crystals that were mentioned here have been grown at

the Institute of Laser Physics, University of Hamburg. The

authors thank V. Peters, K. Petermann and G. Huber from this

Institute for providing the crystals and for fruitful discussions.

We also thank H. and A. SzoÈ ke for the opportunity to use

EDEN and H.-G. Krane for his help with the experiment.
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